首页> 外文OA文献 >Critical values improvement for the Standard Normal Homogeneity Test, a technique for unknown and cardinality dependent distributions.
【2h】

Critical values improvement for the Standard Normal Homogeneity Test, a technique for unknown and cardinality dependent distributions.

机译:标准正态均一性测试的临界值得到了改进,这是一种用于未知和基数相关分布的技术。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The distribution of the test statistics of homogeneity tests is often unknown, requiring the estimation of the critical values through Monte Carlo (MC) simulations. The computation of the critical values at low α, especially when the distribution of the statistics changes with the series length (sample cardinality), requires a considerable number of simulations to achieve a reasonable precision of the estimates (i.e. 10^6 simulations or more for each series length). If, in addition, the test requires a noteworthy computational effort, the estimation of the critical values may need unacceptably long run-\udtimes. To overcome the problem, the paper proposes a regression-based refinement of an initial MC estimate of the critical values, also allowing an approximation of the achieved improvement. Moreover, the paper presents an application of the method to two tests: SNHT (standard normal homogeneity test, widely used in climatology), and SNH2T (a version of SNHT showing a squared numerical complexity). For both, the paper reports the critical values for\udα ranging between 0.1 and 0.0001 (useful for the p-value estimation), and the series length ranging from 10 (widely adopted size in climatological change-point detection literature) to 70,000 elements (nearly the length of a daily data time series 200 years long), estimated with coefficients of variation within 0.22%. For SNHT, a comparison of our results with approximated, theoretically derived, critical values is also performed; we suggest adopting those values for the series exceeding 70,000 elements.
机译:均匀性测试的测试统计信息的分布通常是未知的,需要通过蒙特卡洛(MC)仿真来估计临界值。在低α处的临界值的计算,尤其是当统计数据的分布随序列长度(样本基数)而变化时,需要进行大量的模拟才能获得合理的估算精度(例如,对于10 ^ 6模拟或更多模拟,每个系列的长度)。此外,如果测试需要大量的计算工作,则临界值的估计可能需要漫长的运行时间。为了克服这个问题,本文提出了对临界值的初始MC估计值进行基于回归的改进,也可以使已实现的改进近似。此外,本文介绍了该方法在两种测试中的应用:SNHT(标准的正常均一性测试,在气候学中广泛使用)和SNH2T(SNHT的一种版本,显示出数值复杂度的平方)。对于这两种方法,本文都报告\udα的临界值范围在0.1到0.0001之间(可用于p值估计),序列长度范围从10个(气候变化点检测文献中广泛采用的大小)到70,000个元素(大约是200年之久的每日数据时间序列的长度),估计变异系数在0.22%以内。对于SNHT,还对我们的结果与近似的,理论上得出的临界值进行了比较。我们建议对超过70,000个元素的系列采用这些值。

著录项

  • 作者

    Ieva, F.; Rienzner, M.;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号